scegot package
Submodules
scegot.scegot module
Module contents
- scegot.is_notebook()
Check if the code is running in a Jupyter notebook or not.
Returns
- bool
True if the code is running in a Jupyter notebook, False otherwise.
- class scegot.scEGOT(X, day_names=None, verbose=True, adata_day_key=None)
Bases:
object
- animate_gene_expression(target_gene_name, mode='pca', interpolate_interval=11, n_samples=5000, x_range=None, y_range=None, c_range=None, x_label=None, y_label=None, cmap='gnuplot2', save=False, save_path=None)
Calculate interpolation between all timepoints and create animation colored by gene expression level.
Parameters
- target_gene_namestr
Gene name to plot expression level.
- mode{‘pca’, ‘umap’}, optional
The space to plot gene expression levels, by default “pca”
- interpolate_intervalint, optional
Number of frames to interpolate between two timepoints, by default 11 This is the total number of frames at both timepoints and the number of frames between these. Note that both ends are included.
- n_samplesint, optional
Number of samples to generate, by default 5000
- x_rangelist or tuple of float of shape (2,), optional
Range of the x-axis, by default None
- y_rangelist or tuple of float of shape (2,), optional
Range of the y-axis, by default None
- c_rangelist or tuple of float of shape (2,), optional
Range of the color bar, by default None
- x_labelstr, optional
Label of the x-axis, by default None
- y_labelstr, optional
Label of the y-axis, by default None
- cmapstr, optional
String of the colormap, by default “gnuplot2”
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None If None, the image will be saved as ‘./interpolate_video.gif’
Raises
- ValueError
When ‘mode’ is not ‘pca’ or ‘umap’.
- animatie_interpolated_distribution(x_range=None, y_range=None, interpolate_interval=11, cmap='gnuplot2', save=False, save_path=None)
Export an animation of the interpolated distribution between GMM models.
Parameters
- x_rangelist or tuple of float of shape (2,), optional
Restrict the X axis range, by default None
- y_rangelist or tuple of float of shape (2,), optional
Restrict the Y axis range, by default None
- interpolate_intervalint, optional
The number of frames to interpolate between two timepoints, by default 11 This is the total number of frames at both timepoints and the number of frames between these. Note that both ends are included.
- cmapstr, optional
String of matplolib colormap name, by default “gnuplot2”
- savebool, optional
If True, save the output animation, by default False
- save_path_type_, optional
Path to save the output animation, by default None If None, the animation will be saved as ‘./cell_state_video.gif’
- apply_umap(n_neighbors, n_components=2, random_state=None, min_dist=0.1, umap_other_params={})
Fit self.X_pca to UMAP and return the transformed data.
Parameters
- n_neighborsfloat
The size of local neighborhood used for manifold approximation. Passed to the ‘n_neighbors’ parameter of the UMAP class.
- n_componentsint, optional
The dimension of the space to embed into, by default 2 Passed to the ‘n_components’ parameter of the UMAP class.
- random_stateint, RandomState instance or None, optional
Fix the random seed for reproducibility, by default None Passed to the ‘random_state’ parameter of the UMAP class.
- min_distfloat, optional
The effective minimum distance between embedded points, by default 0.1 Passed to the ‘min_dist’ parameter of the UMAP class.
- umap_other_paramsdict, optional
Other parameters for UMAP, by default {}
Returns
- list of pd.DataFrame of shape (n_samples, n_components of UMAP)
UMAP-transformed data.
- umap.umap_.UMAP
UMAP instance fitted to the input data.
- bures_wasserstein_distance(m_0, m_1, sigma_0, sigma_1)
- calculate_cell_velocities()
Calculate cell velocities between each day.
Returns
- pd.DataFrame
Cell velocities between each day. The rows are ordered as follows: when the number of days is N and the number of cells in each day is M_1, M_2, …, M_N, [day1_cell1 -> day1_cell2 -> … -> day1_cellM_1 -> day2cell1 -> … -> day(N-1)cellM_N]
- calculate_grns(selected_clusters=None, alpha_range=(-2, 2), cv=3, ridge_cv_fit_intercept=False, ridge_fit_intercept=False)
Calculate gene regulatory networks (GRNs) between each day.
Parameters
- selected_clusterslist of list of int of shape (n_days, 2), optional
Specify the clusters to calculate GRNs, by default None If None, all clusters will be used. The list should be like [[day1’s index, selected cluster number], [day2’s index, selected cluster number], …].
- alpha_rangetuple or list of float of shape (2,), optional
Range of alpha values for Ridge regression, by default (-2, 2)
- cvint, optional
Number of cross-validation folds, by default 3 This parameter is passed to RidgeCV’s ‘cv’ parameter.
- ridge_cv_fit_interceptbool, optional
Whether to calculate the intercept in RidgeCV, by default False This parameter is passed to RidgeCV’s ‘fit_intercept’ parameter.
- ridge_fit_interceptbool, optional
Whether to calculate the intercept in Ridge, by default False This parameter is passed to Ridge’s ‘fit_intercept’ parameter.
Returns
- list of pd.DataFrame
Gene regulatory networks between each day. The rows and columns are gene names. Each element of the list corresponds to the GRN between day i and day i + 1.
- list of RidgeCV objects
RidgeCV objects used to calculate GRNs. Each element of the list corresponds to the RidgeCV object between day i and day i + 1.
- calculate_mut_st(gmm_source, gmm_target, t)
- calculate_normalized_solutions(gmm_models, reg=0.01, numItermax=10000000000, method='sinkhorn_epsilon_scaling', tau=100000000.0, stopThr=1e-09, sinkhorn_other_params={})
- calculate_solution(gmm_source, gmm_target, reg=0.01, numItermax=10000000000, method='sinkhorn_epsilon_scaling', tau=100000000.0, stopThr=1e-09, sinkhorn_other_params={})
- calculate_solutions(gmm_models, reg=0.01, numItermax=10000000000, method='sinkhorn_epsilon_scaling', tau=100000000.0, stopThr=1e-09, sinkhorn_other_params={})
- calculate_waddington_potential(n_neighbors=100, knn_other_params={})
Calculate Waddington potential of each sample.
Parameters
- n_neighborsint, optional
Number of neighbors for rach sample, by default 100 This parameter is passed to ‘kneighbors_graph’ function.
- knn_other_paramsdict, optional
Other parameters for ‘kneighbors_graph’ function, by default {}
Returns
- np.ndarray of shape (sum of n_samples of each day - n_samples of the last day,)
Waddington potential of each sample.
- egot(pi_0, pi_1, mu_0, mu_1, S_0, S_1, reg=0.01, numItermax=10000000000, method='sinkhorn_epsilon_scaling', tau=100000000.0, stopThr=1e-09, sinkhorn_other_params={})
- fit_gmm(n_components_list, covariance_type='full', max_iter=2000, n_init=10, random_state=None, gmm_other_params={})
- fit_predict_gmm(n_components_list, covariance_type='full', max_iter=2000, n_init=10, random_state=None, gmm_other_params={})
Fit GMM models with each day’s data and predict labels for them.
Parameters
- n_components_listlist of int
Each element corresponds to the number of components of the GMM model for each day. Passed to the ‘n_components’ parameter of the GaussianMixture class.
- covariance_type{‘full’, ‘tied’, ‘diag’, ‘spherical’}, optional
String describing the type of covariances parameters to use, by default “full” Passed to the ‘covariance_type’ parameter of the GaussianMixture class.
- max_iterint, optional
The number of EM iterations to perform, by default 2000 Passed to the ‘max_iter’ parameter of the GaussianMixture class.
- n_initint, optional
The number of initializations to perform, by default 10 Passed to the ‘n_init’ parameter of the GaussianMixture class.
- random_stateint, RandomState instance or None, optional
Controls the random seed given at each GMM model initialization, by default None Passed to the ‘random_state’ parameter of the GaussianMixture class.
- gmm_other_paramsdict, optional
Other parameters for GMM, by default {}
Returns
- list of GaussianMixture instances
The length of the list is the same as the number of days. Each element is a GMM instance fitted to the corresponding day’s data.
- list of np.ndarray
List of GMM labels. Each element is the predicted labels for the corresponding day’s data.
- gaussian_mixture_density(mu, sigma, alpha, x)
- generate_cluster_names_with_day(cluster_names=None)
- get_gaussian_map(m_0, m_1, sigma_0, sigma_1, x)
- get_gmm_means()
- get_positive_gmm_mean_gene_values_per_cluster(gmm_means, cluster_names=None)
- make_cell_state_graph(cluster_names, mode='pca', threshold=0.05)
Compute cell state graph and build a networkx graph object.
Parameters
- cluster_names2D list of str
1st dimension is the number of days, 2nd dimension is the number of gmm components in each day. Can be generaged by ‘generate_cluster_names’ method.
- mode{‘pca’, ‘umap’}, optional
The space to build the cell state graph, by default “pca”
- thresholdfloat, optional
Threshold to filter edges, by default 0.05 Only edges with edge_weights greater than this threshold will be included.
Returns
- nx.classes.digraph.DiGraph
Networkx graph object of the cell state graph
Raises
- ValueError
When ‘mode’ is not ‘pca’ or ‘umap’.
- make_interpolation_data(gmm_source, gmm_target, t, columns=None, n_samples=2000, seed=0)
Make interpolation data between two timepoints.
Parameters
- gmm_sourceGaussianMixture
GMM model of the source timepoint.
- gmm_targetGaussianMixture
GMM model of the target timepoint.
- tfloat
Interpolation ratio. 0 <= t <= 1. 0 is the source timepoint, 1 is the target timepoint. If you specify 0.5, the data will be interpolated halfway between the source and target timepoints.
- columnslist of str, optional
Columns names of the output data, by default None
- n_samplesint, optional
Number of samples to generate, by default 2000
- seedint, optional
Random seed, by default 0
Returns
- pd.DataFrame
Interpolated data between two timepoints.
- plot_cell_state_graph(G, cluster_names, tf_gene_names=None, tf_gene_pick_num=5, save=False, save_path=None)
Plot the cell state graph with the given graph object.
Parameters
- Gnx.classes.digraph.DiGraph
Networkx graph object of the cell state graph.
- cluster_nameslist of list of str
1st dimension is the number of days, 2nd dimension is the number of gmm components of each day. Can be generaged by ‘generate_cluster_names’ method.
- tf_gene_nameslist of str, optional
List of transcription factor gene names to use, by default None If None, all gene names (self.gene_names) will be used. You can pass on any list of gene names you want to use, not limited to TF genes.
- tf_gene_pick_numint, optional
The number of genes to show in each node and edge, by default 5
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None If None, the image will be saved as ‘./cell_state_graph.png’
- plot_cell_velocity(velocities, mode='pca', color_points='gmm', size_points=30, cmap='tab20', cluster_names=None, save=False, save_path=None)
Plot cell velocities in 2D space.
Parameters
- velocitiespd.DataFrame
Cell velocities calculated by ‘calculate_cell_velocities’ method.
- mode{‘pca’ or ‘umap’}, optional
The space to plot cell velocities, by default “pca”
- color_points{‘gmm’ or ‘day’}, optional
Color points by GMM clusters or days, by default “gmm”
- size_pointsint, optional
Size of points, by default 30
- cmapstr, optional
String of matplolib colormap name, by default “tab20”
- cluster_nameslist of str of shape (sum of gmm components), optional
List of gmm cluster names, by default None Used when ‘color_points’ is ‘gmm’. You need to flatten the list of lists of gmm cluster names before passing it.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./cell_velocity.png’
Raises
- ValueError
This error is raised in the following cases: - When ‘mode’ is not ‘pca’ or ‘umap’. - When ‘color_points’ is not ‘gmm’ or ‘day’. - When ‘color_points’ is ‘gmm’ and ‘cluster_names’ is None.
- plot_fold_change(cluster_names, cluster1, cluster2, tf_gene_names=None, threshold=1.0, save=False, save_path=None)
Plot fold change between two clusters.
Parameters
- cluster_nameslist of list of str
1st dimension is the number of days, 2nd dimension is the number of gmm components in each day. Can be generaged by ‘generate_cluster_names’ method.
- cluster1str
Cluster name of denominator.
- cluster2str
Cluster name of numerator.
- tf_gene_nameslist of str, optional
List of transcription factor gene names to use, by default None If None, all gene names (self.gene_names) will be used. You can pass on any list of gene names you want to use, not limited to TF genes.
- thresholdfloat, optional
Threshold to filter labels, by default 1.0 Only genes with fold change greater than this threshold will be plotted its label.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./fold_change.png’
- plot_gene_expression_2d(gene_name, mode='pca', col=None, save=False, save_path=None)
Plot gene expression levels in 2D space.
Parameters
- gene_namestr
Gene name to plot expression level.
- mode{‘pca’, ‘umap’}, optional
The space to plot gene expression levels, by default “pca”
- collist or tuple of str of shape (2,), optional
X and Y axis labels, by default None If None, the first two columns of the input data will be used.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./pathway_single_gene_2d.png’
Raises
- ValueError
When ‘mode’ is not ‘pca’ or ‘umap’.
- plot_gene_expression_3d(gene_name, col=None, save=False, save_path=None)
Plot gene expression levels in 3D space.
Parameters
- gene_namestr
Gene name to plot expression level.
- collist or tuple of str of shape (2,), optional
X, Y, and Z axis labels, by default None If None, the first three columns of the input data will be used.
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None If None, the image will be saved as ‘./pathway_single_gene_3d.html’
- plot_gmm_predictions(mode='pca', figure_labels=None, x_range=None, y_range=None, figure_titles_without_gmm=None, figure_titles_with_gmm=None, plot_gmm_means=False, cmap='plasma', save=False, save_paths=None)
Plot GMM predictions. Output images for the number of days. Each image contains two subplots: left one is in one color and right one is colored by GMM labels.
Parameters
- mode{‘pca’, ‘umap’}, optional
The space to plot the GMM predictions, by default “pca”
- figure_labelslist or tuple of str of shape (2,), optional
X and Y axis labels, by default None If None, the first two columns of the input data will be used.
- x_rangelist or tuple of float of shape (2,), optional
Restrict the X axis range, by default None If None, the range will be automatically determined to include all data points.
- y_rangelist or tuple of float of shape (2,), optional
Restrict the Y axis range, by default None If None, the range will be automatically determined to include all data points.
- figure_titles_without_gmmlist or tuple of str of shape (n_days,), optional
List of figure titles of left subplots, by default None
- figure_titles_with_gmmlist or tuple of str of shape (n_days,), optional
List of figure titles of right subplots, by default None
- plot_gmm_meansbool, optional
If True, plot GMM mean points on the right subplots, by default False
- cmapstr, optional
String of matplolib colormap name, by default “plasma”
- savebool, optional
If True, save the output images, by default False
- save_pathslist or tuple of str of shape (n_days), optional
List of paths to save the output images, by default None If None, the images will be saved as ‘./GMM_preds_{i + 1}.png’.
Raises
- ValueError
When ‘mode’ is not ‘pca’ or ‘umap’.
- plot_grn_graph(grns, ridge_cvs, selected_genes, threshold=0.01, save=False, save_paths=None, save_format='png')
Plot gene regulatory networks (GRNs) between each day.
Parameters
- grnslist of pd.DataFrame
Gene regulatory networks between each day. The rows and columns are gene names.
- ridge_cvslist of RidgeCV objects
RidgeCV objects used to calculate GRNs.
- selected_geneslist of str
Gene names to plot GRNs.
- thresholdfloat, optional
Threshold to plot edges, by default 0.01 If the absolute value of the edge weight is less than this value, the edge will not be plotted.
- savebool, optional
If True, save the output image, by default False
- save_pathsstr, optional
Paths to save the output images, by default None
- save_formatstr, optional
Format of the output images, by default “png”
- plot_interpolation_of_cell_velocity(velocities, mode='pca', color_streams=False, color_points='gmm', cluster_names=None, x_range=None, y_range=None, cmap='gnuplot2', linspace_num=300, save=False, save_path=None)
Plot the interpolation of cell velocities. This mefhod could be depricated in the future because ‘plot_cell_velocity’ method now supports plotting streamlines.
Parameters
- velocitiespd.DataFrame
Cell velocities calculated by ‘calculate_cell_velocities’ method.
- mode{‘pca’, ‘umap’}, optional
The space to plot cell velocities, by default “pca”
- color_streamsbool, optional
If True, color the streamlines by the speed of the cell velocities, by default False
- color_points{‘gmm’ or ‘day’}, optional
Color points by GMM clusters or days, by default “gmm”
- cluster_nameslist of str of shape (sum of gmm n_components), optional
List of gmm cluster names, by default None Used when ‘color_points’ is ‘gmm’. You need to flatten the list of lists of gmm cluster names before passing it.
- x_rangetuple or list of float of shape (2,), optional
Limit of the x-axis, by default None
- y_rangetuple or list of float of shape (2,), optional
Limit of the y-axis, by default None
- cmapstr, optional
String of matplolib colormap name, by default “gnuplot2”
- linspace_numint, optional
Number of points on each axis to interpolate, by default 300 linspace_num * linspace_num points will be interpolated.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./interpolation_of_cell_velocity_gmm_clusters.png’
Raises
- ValueError
This error is raised in the following cases: - When ‘mode’ is not ‘pca’ or ‘umap’. - When ‘color_points’ is not ‘gmm’ or ‘day’. - When ‘color_points’ is ‘gmm’ and ‘cluster_names’ is None.
- plot_pathway_gene_expressions(cluster_names, pathway_names, selected_genes, save=False, save_path=None)
Plot gene expression levels within a pathway.
Parameters
- cluster_nameslist of list of str
1st dimension is the number of days, 2nd dimension is the number of gmm components in each day. Can be generaged by ‘generate_cluster_names’ method.
- pathway_nameslist of str of shape (n_days,)
List of cluster names included in the pathway. Specify like [‘day0’s cluster name’, ‘day1’s cluster name’, …, ‘dayN’s cluster name’].
- selected_geneslist of str
List of gene names whose gene expression changes you want to track. Recommend using about 5 genes.
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None If None, the image will be saved as ‘./pathway_gene_expressions.png’
- plot_pathway_mean_var(cluster_names, pathway_names, tf_gene_names=None, threshold=1.0, save=False, save_path=None)
Plot mean and variance of gene expression levels within a pathway.
Parameters
- cluster_nameslist of list of str
1st dimension is the number of days, 2nd dimension is the number of gmm components in each day. Can be generaged by ‘generate_cluster_names’ method.
- pathway_nameslist of str of shape (n_days,)
List of cluster names included in the pathway. Specify like [‘day0’s cluster name’, ‘day1’s cluster name’, …, ‘dayN’s cluster name’].
- tf_gene_nameslist of str, optional
List of transcription factor gene names to use, by default None If None, all gene names (self.gene_names) will be used. You can pass on any list of gene names you want to use, not limited to TF genes.
- thresholdfloat, optional
Threshold to filter labels, by default 1.0 Only genes with variance greater than this threshold will be plotted its label.
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None If None, the image will be saved as ‘./pathway_mean_var.png’
- plot_pathway_single_gene_2d(gene_name, mode='pca', col=None, save=False, save_path=None)
- plot_pathway_single_gene_3d(gene_name, col=None, save=False, save_path=None)
- plot_simple_cell_state_graph(G, layout='normal', order=None, save=False, save_path=None)
Plot the cell state graph with the given graph object in a simple way.
Parameters
- Gnx.classes.digraph.DiGraph
Networkx graph object of the cell state graph.
- layout{‘normal’, ‘hierarchy’}, optional
The layout of the graph, by default “normal” When ‘normal’, the graph is plotted the same layout as the self.plot_cell_state_graph method. When ‘hierarchy’, the graph is plotted with the day on the x-axis and the cluster on the y-axis.
- order{‘weight’, None}, optional
Order of nodes along the y-axis, by default None This parameter is only used when ‘layout’ is ‘hierarchy’. When ‘weight’, the nodes are ordered by the size of the nodes. When None, the nodes are ordered by the cluster number.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./simple_cell_state_graph.png’
Raises
- ValueError
When ‘layout’ is not ‘normal’ or ‘hierarchy’, or ‘order’ is not None or ‘weight’.
- plot_true_and_interpolation_distributions(interpolate_index, mode='pca', n_samples=2000, t=0.5, plot_source_and_target=True, alpha_true=0.5, x_col_name=None, y_col_name=None, x_range=None, y_range=None, save=False, save_path=None)
Compare the true and interpolation distributions by plotting them.
Parameters
- interpolate_indexint
Index of the timepoint to interpolate. 1 <= interpolate_index <= n_days - 2
- mode{‘pca’, ‘umap’}, optional
The space to plot gene expression levels, by default “pca”
- n_samplesint, optional
Number of samples to generate, by default 2000
- tfloat, optional
Interpolation ratio, by default 0.5 If you want to interpolate halfway between the source and target timepoints, specify 0.5. Source timepoint is interpolate_index - 1, target timepoint is interpolate_index + 1.
- plot_source_and_targetbool, optional
If True, plot the source and target timepoints, by default True
- alpha_truefloat, optional
Transparency of the true data, by default 0.5
- x_col_namestr, optional
Label of the x-axis, by default None
- y_col_name_type_, optional
Label of the y-axis, by default None
- x_rangelist or tuple of float of shape (2,), optional
Range of the x-axis, by default None If None, the range will be automatically determined based on the data.
- y_rangelist or tuple of float of shape (2,), optional
Range of the y-axis, by default None If None, the range will be automatically determined based on the data.
- savebool, optional
If True, save the output image, by default False
- save_path_type_, optional
Path to save the output image, by default None
Raises
- ValueError
When ‘mode’ is not ‘pca’ or ‘umap’.
- plot_waddington_potential(waddington_potential, mode='pca', gene_name=None, save=False, save_path=None)
Plot Waddington potential in 3D space.
Parameters
- waddington_potentialnp.ndarray
Waddington potential of each sample. This array should be calculated by ‘calculate_waddington_potential’ method.
- mode{‘pca’, ‘umap’}, optional
The space to plot Waddington potential, by default “pca”
- gene_namestr, optional
Gene name to color the points, by default None If None, the points will be colored by Waddington potential. If specified, the points will be colored by the expression of the specified gene.
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./waddington_potential.html’
- plot_waddington_potential_surface(waddington_potential, mode='pca', save=False, save_path=None)
Plot Waddington’s landscape in 3D space by using cellmap.
Parameters
- waddington_potentialnp.ndarray
Waddington potential of each sample. This array should be calculated by ‘calculate_waddington_potential’ method
- mode{‘pca’, ‘umap’}, optional
The space to plot Waddington potential, by default “pca”
- savebool, optional
If True, save the output image, by default False
- save_pathstr, optional
Path to save the output image, by default None If None, the image will be saved as ‘./wadding_potential_surface.html’
- predict_gmm_label(X_item, gmm_model)
- predict_gmm_labels(X, gmm_models)
- preprocess(pca_n_components, recode_params={}, umi_target_sum=10000.0, pca_random_state=None, pca_other_params={}, apply_recode=True, apply_normalization_log1p=True, apply_normalization_umi=True, select_genes=True, n_select_genes=2000)
Preprocess the input data.
Apply scRECODE, normalize, select highly variable genes, and apply PCA.
Parameters
- pca_n_componentsint
Number of components to keep in PCA. Passed to the ‘n_components’ parameter of the PCA class.
- recode_paramsdict, optional
Parameters for scRECODE, by default {}
- umi_target_sumint or float, optional
Target sum for UMI normalization, by default 1e4
- pca_random_stateint, RandomState instance or None, optional
Pass an int for reproducible results, by default None Passed to the ‘random_state’ parameter of the PCA class.
- pca_other_paramsdict, optional
Parameters other than ‘n_components’ and ‘random_state’ for PCA, by default {}
- apply_recodebool, optional
If True, apply scRECODE, by default True
- apply_normalization_log1pbool, optional
If True, apply log1p normalization, by default True
- apply_normalization_umibool, optional
If True, apply UMI normalization, by default True
- select_genesbool, optional
If True, filter genes and select highly variable genes, by default True
- n_select_genesint, optional
Number of highly variable genes to select, by default 2000 Used only when ‘select_genes’ is True.
Returns
- list of pd.DataFrame of shape (n_samples, n_components of PCA)
Normalized, filtered, and PCA-transformed data.
- sklearn.decomposition.PCA
PCA instance fitted to the input data.
- replace_gmm_labels(converter)